افزایش دقت آزمایش‌های طبی با هوش‌‎مصنوعی

|
۱۴۰۳/۰۶/۲۵
|
۱۶:۰۰:۰۱
| کد خبر: ۲۱۳۸۵۵۴
افزایش دقت آزمایش‌های طبی با هوش‌‎مصنوعی
سامانه آزمایشی تشخیصی جدیدی ایجاد شده که در آن از هوش‌مصنوعی برای بهبود عملکرد استفاده شده است.

به گزارش خبرگزاری برنا؛ این سیستم تشخیص طبی، یک ترانزیستور قدرتمند و حساس را با یک سیستم آزمایش تشخیصی ارزان و مبتنی بر کاغذ ترکیب می‌کند. هنگامی که این ابزار با یادگیری ماشین ترکیب می‌شود، این سیستم به نوع جدیدی از زیست‌حسگر تبدیل می‌شود که در نهایت می‌تواند آزمایش و تشخیص در خانه را انجام دهد.



این تیم به رهبری جونونگ چن، در دانشگاه شیکاگو و آیدوگان اوزان در دانشگاه کالیفرنیا، یک ترانزیستور اثر میدان (FET) را که می‌تواند غلظت مولکول‌های زیستی را تعیین کند، با یک کارتریج مبتنی بر کاغذ ترکیب کردند. این ترکیب حساسیت بالای FET‌ها را با هزینه کم کارتریج‌های کاغذی ترکیب می‌کند. هنگامی که این سامانه با یادگیری ماشین ادغام می‌شود، کلسترول را در یک نمونه سرم با دقت بیش از ۹۷ ٪ اندازه‌گیری می‌کند در حالی که تا ده درصد خطا مجاز است.

نتایج این پروژه اثبات مفهوم بوده که در نهایت می‌تواند برای ایجاد آزمایش‌های تشخیصی خانگی ارزان و بسیار دقیق استفاده شود و با آن بتوان انواع نشانگر‌های زیستی بهداشت و بیماری را در خانه شناسایی کرد.

آزمایش‌های تشخیصی در خانه، مانند بارداری یا آزمایشات کرونا، از فناوری حسگری مبتنی بر کاغذ برای تشخیص حضور یک مولکول هدف استفاده می‌کنند. در حالی که این تست‌ها ساده و کم هزینه هستند، اما تا حد زیادی کیفی بوده و به کاربر اطلاع می‌دهند که آیا نشانگر موجود است یا خیر.

از سوی دیگر، تست‌های مبتنی بر FET ها، برای دستگاه‌های الکترونیکی طراحی شده‌اند. اما امروزه از آن‌ها به عنوان زیست‌حسگر بسیار حساس برای تشخیص نشانگر در زمان واقعی استفاده می‌شوند. بسیاری بر این باورند که FET‌ها آینده زیست حسگری هستند، اما تجاری‌سازی آنها به دلیل الزامات خاص شرایط آزمایش محدود شده است. در یک ماتریس بسیار پیچیده مانند خون، تشخیص سیگنال از یک آنالیت برای FET دشوار است.

تیم‌های چن و اوزکان تصمیم گرفتند هر دو فناوری را برای ایجاد نوع جدیدی از سیستم آزمایش ترکیب کنند. فناوری کاغذی، به ویژه غشای سنجش متخلخل آن، نیاز به محیط آزمایش پیچیده و کنترل شده را که معمولاً در FET‌ها مورد نیاز است، کاهش می‌دهد. همچنین کم هزینه‌ای بوده و هر کارتریج حدود ۱۵ سنت هزینه دارد.

هنگامی که این تیم تجزیه و تحلیل یادگیری عمیق را با این سیستم ترکیب کرد، دقت نتیجه آزمایش FET بهبود یافت.

انتهای پیام/

نظر شما
پیشنهاد سردبیر
پرونده ویژه